首页> 外文OA文献 >Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping
【2h】

Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping

机译:使用稀疏多项式混沌的振荡系统的替代模型   扩张和随机时间扭曲

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polynomial chaos expansions (PCE) have proven efficiency in a number offields for propagating parametric uncertainties through computational models ofcomplex systems, namely structural and fluid mechanics, chemical reactions andelectromagnetism, etc. For problems involving oscillatory, time-dependentoutput quantities of interest, it is well-known that reasonable accuracy ofPCE-based approaches is difficult to reach in the long term. In this paper, wepropose a fully non-intrusive approach based on stochastic time warping toaddress this issue: each realization (trajectory) of the model response isfirst rescaled to its own time scale so as to put all sampled trajectories inphase in a common virtual time line. Principal component analysis is introducedto compress the information contained in these transformed trajectories andsparse PCE representations using least angle regression are finally used toapproximate the components. The approach shows remarkably small predictionerror for particular trajectories as well as for second-order statistics of thelatter. It is illustrated on different benchmark problems well known in theliterature on time-dependent PCE problems, ranging from rigid body dynamics,chemical reactions to forced oscillations of a non linear system.
机译:通过复杂系统的计算模型,即结构和流体力学,化学反应和电磁学等,多项式混沌扩展(PCE)已在许多领域证明了传播参数不确定性的效率。对于涉及感兴趣的,随时间变化的输出量的问题,它很好众所周知,从长远来看,难以达到基于PCE的方法的合理准确性。在本文中,我们提出了一种基于随机时间扭曲的完全非侵入式方法来解决此问题:首先将模型响应的每个实现(轨迹)重新调整为自己的时间尺度,以便将所有采样轨迹同相放置在一个公共虚拟时间线上。引入主成分分析来压缩这些变换轨迹中包含的信息,并使用最小角度回归将稀疏PCE表示最终用于逼近成分。该方法对特定轨迹以及后期的二阶统计量显示出非常小的预测误差。它针对文学中随时间变化的PCE问题而众所周知的不同基准问题,包括刚体动力学,化学反应到非线性系统的强迫振荡。

著录项

  • 作者

    Mai, Chu V.; Sudret, Bruno;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号